જો વિધેય  $f(x+y)=f(x) f(y)$ for all $x, y \in N$ એવી રીતે વ્યાખ્યાયિત હોય કે જેથી, $f(1)=3$ અને $\sum\limits_{x = 1}^n {f\left( x \right) = 120,} $ તો $n$ નું મૂલ્ય શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that,

$f(x+y)=f(x) \times f(y)$ for all $x, y \in N$         .....$(1)$

$f(1)=3$

Taking $x=y=1$ in $(1)$

We obtain $f(1+1)=f(2)=f(1) f(1)=3 \times 3=9$

Similarly,

$f(1+1+1)=f(3)=f(1+2)=f(1) f(2)=3 \times 9=27$

$f(4)=f(1+4)=f(1) f(3)=3 \times 27=81$

$\therefore f(1), f(2), f(3), \ldots \ldots,$ that is $3,9,27, \ldots \ldots,$ forms a $G.P.$ with both the first term and common ratio equal to $3 .$

It is known that, $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$

It is given that, $\sum\limits_{x = 1}^n {f\left( x \right) = 120,} $

$\therefore 120=\frac{3\left(3^{n}-1\right)}{3-1}$

$\Rightarrow 120=\frac{3}{2}\left(3^{n}-1\right)$

$\Rightarrow 3^{n}-1=80$

$\Rightarrow 3^{n}=81=3^{4}$

$\therefore n=4$

Thus, the value of $n$ is $4$

Similar Questions

$x = - 3$ માટે સમીકરણ $\left| {\;\frac{{3{x^3} + 1}}{{2{x^2} + 2}}\;} \right|$ ની કિમત મેળવો.

જો $x \in R$ માટે $f(x) = \frac{{{{\cos }^2}x + {{\sin }^4}x}}{{{{\sin }^2}x + {{\cos }^4}x}}$ , તો $f(2002) = $

તદેવ વિધેય $I _{ N }: N \rightarrow N$, $I _{ N }$ $(x)=x$  $\forall $  $x \in N$ દ્વારા વ્યાખ્યાયિત છે. સાબિત કરો કે $I _{ N }$ વ્યાપ્ત હોવા છતાં $I _{ N }+ I _{ N }:$  $ N \rightarrow N$, $\left(I_{N}+I_{N}\right)(x)=$ $I_{N}(x)+I_{N}(x)$ $=x+x=2 x$ વ્યાપ્ત નથી.

જો વિધેય $f(x)=\log _e\left(4 x^2+11 x+6\right)+\sin ^{-1}(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right)$ નો પ્રદેશ $(\alpha, \beta]$ હોય, તો $36|\alpha+\beta|=......$

  • [JEE MAIN 2023]

જો $f(x) = \frac{2x^2-14x^2-8x+49}{x^4-7x^2-4x+23}$ નો વિસ્તારગણ ($a, b$] હોય તો ($a +b$) ની કિમત ........ મળે.