If $f$ is a function satisfying $f(x+y)=f(x) f(y)$ for all $x, y \in N$ such that $f(1)=3$ and $\sum\limits_{x = 1}^n {f\left( x \right) = 120,} $ find the value of $n$
It is given that,
$f(x+y)=f(x) \times f(y)$ for all $x, y \in N$ .....$(1)$
$f(1)=3$
Taking $x=y=1$ in $(1)$
We obtain $f(1+1)=f(2)=f(1) f(1)=3 \times 3=9$
Similarly,
$f(1+1+1)=f(3)=f(1+2)=f(1) f(2)=3 \times 9=27$
$f(4)=f(1+4)=f(1) f(3)=3 \times 27=81$
$\therefore f(1), f(2), f(3), \ldots \ldots,$ that is $3,9,27, \ldots \ldots,$ forms a $G.P.$ with both the first term and common ratio equal to $3 .$
It is known that, $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
It is given that, $\sum\limits_{x = 1}^n {f\left( x \right) = 120,} $
$\therefore 120=\frac{3\left(3^{n}-1\right)}{3-1}$
$\Rightarrow 120=\frac{3}{2}\left(3^{n}-1\right)$
$\Rightarrow 3^{n}-1=80$
$\Rightarrow 3^{n}=81=3^{4}$
$\therefore n=4$
Thus, the value of $n$ is $4$
If $f:R \to R$ satisfies $f(x + y) = f(x) + f(y)$, for all $x,\;y \in R$ and $f(1) = 7$, then $\sum\limits_{r = 1}^n {f(r)} $ is
If function $f(x) = \frac{1}{2} - \tan \left( {\frac{{\pi x}}{2}} \right)$; $( - 1 < x < 1)$ and $g(x) = \sqrt {3 + 4x - 4{x^2}} $, then the domain of $gof$ is
Set of all values of $x$ satisfying
$\frac{{{x^4} - 4{x^3} + 3{x^2}}}{{({x^2} - 4)({x^2} - 7x + 10)}} \ge 0$
Let $f(x) = sin\,x,\,\,g(x) = x.$
Statement $1:$ $f(x)\, \le \,g\,(x)$ for $x$ in $(0,\infty )$
Statement $2:$ $f(x)\, \le \,1$ for $(x)$ in $(0,\infty )$ but $g(x)\,\to \infty$ as $x\,\to \infty$