ઘટનાઓ $E$ અને $F$ એવા પ્રકારની છે કે $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2}$ અને $P(E$ અને $F )=\frac{1}{8},$ તો $P(E$ અથવા $F$) શોધો.
Here, $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2},$ and $P ( E$ and $F )=\frac{1}{8}$
We know that $P ( E$ and $F )= P ( E )+ P ( F )- P ( E$ and $F )$
$\therefore P(E $ or $F)=\frac{1}{4}+\frac{1}{2}-\frac{1}{8}$ $=\frac{2+4-1}{8}=\frac{5}{8}$
જો ઘટનાઓ $X$ અને $Y$ છે કે જેથી $P(X \cup Y=P)\,(X \cap Y).$
વિધાન $1:$ $P(X \cap Y' = P)\,(X' \cap Y = 0).$
વિધાન $2:$ $P(X) + P(Y = 2)\,P\,(X \cap Y)$
વિર્ધાર્થીંને પ્રથમ, દ્વિતીય કે તૃત્તીય ગ્રેડમાં પાસ થાય કે ઘટનાઓ $A, B$ અને $C$ ની સંભાવનાઓ અનક્રમે $1/10, 3/5$ અને $1/4$ હોય, તો તે નાપાસ (ચોથા ગ્રેડ) થાય તેની સંભાવના ……. છે.
$53$ રવિવાર અને $53$ સોમવાર ધરાવતા વર્ષોમાથી કોઈપણ પસંદ કરતાં, તે લીપ વર્ષ બનવાની સંભાવના કેટલી?
જેના પર $1$ થી $100$ નંબર લખેલા છે એવી લોટરીની $100$ ટિકિટો છે. યાર્દચ્છિક રીતે એક ટિકિટ ખેંચતા તેના પરનો નંબર $3$ અથવા $5$ નો ગુણક હોય તેની સંભાવના મેળવો.
$A$ અને $B$ બે ઘટનાઓ એવા પ્રકારની છે કે $P(A) = 0.54, P(B) = 0.69$ અને$P(A \cap B)=0.35$ $P \left( A ^{\prime} \cap B ^{\prime}\right)$ શોધો.