Let $A$ and $B$ be sets. If $A \cap X=B \cap X=\phi$ and $A \cup X=B \cup X$ for some set $X ,$ show that $A = B$
( Hints $A = A \cap (A \cup X),B = B \cap (B \cup X)$ and use Distributive law )
Let $A$ and $B$ be two sets such that $A \cap X=B \cap x=f$ and $A \cup X=B \cup X$ for some
To show: $A=B$
It can be seen that
$A=A \cap(A \cup X)=A \cap(B \cup X)[A \cup X=B \cup X]$
$=(A \cap B) \cup(A \cap X)$ [Distributive law]
$=(A \cap B) \cup \varnothing[A \cap X=\varnothing]$
$=A \cap B$ .........$(1)$
Now, $B=B \cap(B \cup X)$
$=B \cap(A \cup X)[A \cup X=B \cup X]$
$=(B \cap A) \cup(B \cap X)$ [Distributive law]
$=(B \cap A) \cup \varnothing[B \cap X=\varnothing]$
$=B \cap A$
$=A \cap B$ ...........$(2)$
Hence, from $(1)$ and $(2),$ we obtain $A = B$
Let $A, B$ and $C$ be sets such that $\phi \ne A \cap B \subseteq C$. Then which of the following statements is not true ?
If $A, B, C$ be three sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$, then
If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find
$A \cap B$
Let $A=\{a, b\}, B=\{a, b, c\} .$ Is $A \subset B \,?$ What is $A \cup B \,?$
If the sets $A$ and $B$ are defined as $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y = - x,x \in R\} $, then