Number of solutions of equation $secx = 1 + cosx + cos^2x + ........ \infty$ in $x \in [-50 \pi, 50 \pi]$ is -

  • A

    $96$

  • B

    $99$

  • C

    $100$

  • D

    $101$

Similar Questions

The general solution of $\sin x - \cos x = \sqrt 2 $, for any integer $n$ is

The number of values of $x$ in the interval $[0, 5 \pi  ] $ satisfying the equation $3{\sin ^2}x - 7\sin x + 2 = 0$ is

  • [IIT 1998]

The number of solutions to $\sin x=\frac{6}{x}$ with $0 \leq x \leq 12 \pi$ is

  • [KVPY 2009]

If $|cos\ x + sin\ x| + |cos\ x\ -\ sin\ x| = 2\ sin\ x$ ; $x \in  [0,2 \pi ]$ , then maximum integral value of $x$ is

One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval