If $C_{x} \equiv^{25} C_{x}$ and $\mathrm{C}_{0}+5 \cdot \mathrm{C}_{1}+9 \cdot \mathrm{C}_{2}+\ldots .+(101) \cdot \mathrm{C}_{25}=2^{25} \cdot \mathrm{k}$ then $\mathrm{k}$ is equal to

  • [JEE MAIN 2020]
  • A

    $42$

  • B

    $45$

  • C

    $51$

  • D

    $48$

Similar Questions

The coefficient of $x^{70}$ in $x^2(1+x)^{98}+x^3(1+x)^{97}+$ $x^4(1+x)^{96}+\ldots \ldots . .+x^{54}(1+x)^{46}$ is ${ }^{99} \mathrm{C}_p-{ }^{46} \mathrm{C}_{\mathrm{q}}$.

Then a possible value to $\mathrm{p}+\mathrm{q}$ is :

  • [JEE MAIN 2024]

Let $\left(2 x ^{2}+3 x +4\right)^{10}=\sum \limits_{ r =0}^{20} a _{ r } x ^{ r } \cdot$ Then $\frac{ a _{7}}{ a _{13}}$ is equal to

  • [JEE MAIN 2020]

$(1 + x) (1 + x + x^2) (1 + x + x^2 + x^3) ...... (1 + x + x^2 + ...... + x^{100})$ when written in the ascending power of $x$ then the highest exponent of $x$ is ______ .

The value of $\left( \begin{array}{l}30\\0\end{array} \right)\,\left( \begin{array}{l}30\\10\end{array} \right) - \left( \begin{array}{l}30\\1\end{array} \right)\,\left( \begin{array}{l}30\\11\end{array} \right)$ + $\left( \begin{array}{l}30\\2\end{array} \right)\,\left( \begin{array}{l}30\\12\end{array} \right) + ....... + \left( \begin{array}{l}30\\20\end{array} \right)\,\left( \begin{array}{l}30\\30\end{array} \right)$

  • [IIT 2005]

${C_0}{C_r} + {C_1}{C_{r + 1}} + {C_2}{C_{r + 2}} + .... + {C_{n - r}}{C_n}$=