If $c = \frac {1}{2}$ and $f(x) = 2x -x^2$ , then interval of $x$ in which $LMVT$, is applicable, is
$(1, 2)$
$(-1, 1)$
$(0, 1)$
None
$(i)$ $f (x)$ is continuous and defined for all real numbers
$(ii)$ $f '(-5) = 0 \,; \,f '(2)$ is not defined and $f '(4) = 0$
$(iii)$ $(-5, 12)$ is a point which lies on the graph of $f (x)$
$(iv)$ $f ''(2)$ is undefined, but $f ''(x)$ is negative everywhere else.
$(v)$ the signs of $f '(x)$ is given below
Possible graph of $y = f (x)$ is
Consider a quadratic equation $ax^2 + bx + c = 0,$ where $2a + 3b + 6c = 0$ and let $g(x) = a\frac{{{x^3}}}{3} + b\frac{{{x^2}}}{2} + cx.$
Statement $1:$ The quadratic equation has at least one root in the interval $(0, 1).$
Statement $2:$ The Rolle's theorem is applicable to function $g(x)$ on the interval $[0, 1 ].$
Verify Rolle's Theorem for the function $f(x)=x^{2}+2 x-8, x \in[-4,2]$
For the function $f(x) = {e^x},a = 0,b = 1$, the value of $ c$ in mean value theorem will be
From mean value theorem $f(b) - f(a) = $ $(b - a)f'({x_1});$ $a < {x_1} < b$ if $f(x) = {1 \over x}$, then ${x_1} = $