Verify Rolle's Theorem for the function $f(x)=x^{2}+2 x-8, x \in[-4,2]$
The given function, $f(x)=x^{2}+2 x-8,$ being polynomial function, is continuous in $[-4,2]$ and is differentiable in $(-4,2).$
$f(-4)=(-4)^{2}+2 x(-4)-8=16-8-8=0$
$f(2)=(2)^{2}+2 \times 2-8=4+4-8=0$
$\therefore f(-4)=f(2)=0$
$\Rightarrow$ The value of $f(x)$ at $-4$ and $2$ coincides.
Rolle's Theorem states that there is a point $c \in(-4,2)$ such that $f^{\prime}(c)=0$
$f(x)=x^{2}+2 x-8$
$\Rightarrow f^{\prime}(x)=2 x+2$
$\therefore f^{\prime}(c)=0$
$\Rightarrow 2 c+2=-1$
$\Rightarrow c=-1$
$c=-1 \in(-4,2)$
Hence, Rolle's Theorem is verified for the given function.
In the mean value theorem, $f(b) - f(a) = (b - a)f'(c) $ if $a = 4$, $b = 9$ and $f(x) = \sqrt x $ then the value of $c$ is
The function $f(x) = x(x + 3){e^{ - (1/2)x}}$ satisfies all the conditions of Rolle's theorem in $ [-3, 0]$. The value of $c$ is
If $g(x) = 2f (2x^3 - 3x^2) + f(6x^2 - 4x^3 - 3)$, $\forall x \in R$ and $f"(x) > 0, \forall x \in R$ , then $g'(x) > 0$ for $x$ belonging to
Let $f(x) = \sqrt {x - 1} + \sqrt {x + 24 - 10\sqrt {x - 1} ;} $ $1 < x < 26$ be real valued function. Then $f\,'(x)$ for $1 < x < 26$ is
If $L.M.V.$ theorem is true for $f(x) = x(x-1)(x-2);\, x \in [0,\, 1/2]$ , then $C =$ ?