Verify Rolle's Theorem for the function $f(x)=x^{2}+2 x-8, x \in[-4,2]$
The given function, $f(x)=x^{2}+2 x-8,$ being polynomial function, is continuous in $[-4,2]$ and is differentiable in $(-4,2).$
$f(-4)=(-4)^{2}+2 x(-4)-8=16-8-8=0$
$f(2)=(2)^{2}+2 \times 2-8=4+4-8=0$
$\therefore f(-4)=f(2)=0$
$\Rightarrow$ The value of $f(x)$ at $-4$ and $2$ coincides.
Rolle's Theorem states that there is a point $c \in(-4,2)$ such that $f^{\prime}(c)=0$
$f(x)=x^{2}+2 x-8$
$\Rightarrow f^{\prime}(x)=2 x+2$
$\therefore f^{\prime}(c)=0$
$\Rightarrow 2 c+2=-1$
$\Rightarrow c=-1$
$c=-1 \in(-4,2)$
Hence, Rolle's Theorem is verified for the given function.
Let $\mathrm{f}$ be any continuous function on $[0,2]$ and twice differentiable on $(0,2)$. If $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ and $f(2)=2$, then
Let $f$ and $g$ be twice differentiable even functions on $(-2,2)$ such that $f\left(\frac{1}{4}\right)=0, f\left(\frac{1}{2}\right)=0, f(1)=1$ and $g\left(\frac{3}{4}\right)=0, g(1)=2$ Then, the minimum number of solutions of $f(x) g^{\prime \prime}(x)+f^{\prime}(x) g^{\prime}(x)=0$ in $(-2,2)$ is equal to
In which of the following functions is Rolle's theorem applicable ?
The function $f(x) = x(x + 3){e^{ - (1/2)x}}$ satisfies all the conditions of Rolle's theorem in $ [-3, 0]$. The value of $c$ is
Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ be a thrice differentiable function such that $f(0)=0, f(1)=1, f(2)=-1, f(3)=2$ and $f(4)=-2$. Then, the minimum number of zeros of $\left(3 f^{\prime} f^{\prime \prime}+f f^{\prime \prime \prime}\right)(x)$ is....................