General solution of the equation $\cot \theta - \tan \theta = 2$ is
$n\pi + \frac{\pi }{4}$
$\frac{{n\pi }}{2} + \frac{\pi }{8}$
$\frac{{n\pi }}{2} \pm \frac{\pi }{8}$
None of these
The number of integral values of $k$, for which the equation $7\cos x + 5\sin x = 2k + 1$ has a solution, is
The expression $(1 + \tan x + {\tan ^2}x)$ $(1 - \cot x + {\cot ^2}x)$ has the positive values for $x$, given by
If ${\sec ^2}\theta = \frac{4}{3}$, then the general value of $\theta $ is
If ${\tan ^2}\theta - (1 + \sqrt 3 )\tan \theta + \sqrt 3 = 0$, then the general value of $\theta $ is
If $5\cos 2\theta + 2{\cos ^2}\frac{\theta }{2} + 1 = 0, - \pi < \theta < \pi $, then $\theta = $