જો $A = \int\limits_1^{\sin \theta } {\frac{t}{{1 + {t^2}}}} dt$ અને  $B = \int\limits_1^{\cos ec\theta } {\frac{dt}{{t\left( {1 + {t^2}} \right)}}} $ , (કે જ્યાં  $\theta  \in \left( {0,\frac{\pi }{2}} \right))$, હોય તો  $\left| {\begin{array}{*{20}{c}}
A&{{A^2}}&{ - B}\\
{{e^{A + B}}}&{{B^2}}&{ - 1}\\
1&{{A^2} + {B^2}}&{ - 1}
\end{array}} \right|$ ની કિમંત મેળવો.

  • A

    $0$

  • B

    $A^2$

  • C

    $A^3$

  • D

    $2A^3$

Similar Questions

જો $a > 0$ અને વિવેચક $a{x^2} + 2bx + c < 0 $ છે, તો $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ = . . .

  • [AIEEE 2002]

વિધાન $-1$ : સમીકરણો  $x + \left( {\sin \,\alpha } \right)y + \left( {\cos \,\alpha } \right)z = 0$ ;$x + \left( {\cos \,\alpha } \right)y + \left( {\sin \alpha } \right)z = 0$ ;$x - \left( {\sin \,\alpha } \right)y - \left( {\cos \alpha } \right)z = 0$ ; ને શૂન્યતર ઉકેલ એ $\alpha $ ની માત્ર એકજ કિમત કે જે અંતરાલ $\left( {0\,,\,\frac{\pi }{2}} \right)$ તેના માટે ધરાવે છે .

વિધાન $-2$ : સમીકરણ કે જે $\alpha $ સ્વરૂપ માં છે

$\left| {\begin{array}{*{20}{c}}
  {\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha } \\ 
  {\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha } \\ 
  {\cos {\mkern 1mu} \alpha }&{ - \sin {\mkern 1mu} \alpha }&{ - \cos {\mkern 1mu} \alpha } 
\end{array}} \right| = 0$

નું એક માત્ર બીજ અંતરાલ $\left( {0\,,\,\frac{\pi }{2}} \right)$ માં છે .

  • [JEE MAIN 2013]

નીચે આપેલાં શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ શોધો : $(1,0),(6,0),(4,3)$

જો સમીકરણ સંહતિ

$2 x+y-z=5$

$2 x-5 y+\lambda z=\mu$

$x+2 y-5 z=7$

ને અસંખ્ય  ઉકેલો હોય,તો

$(\lambda+\mu)^2+(\lambda-\mu)^2=........$

  • [JEE MAIN 2023]

નીચે આપેલાં શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ શોધો : $(2,7),(1,1),(10,8)$