જો ${\left( {1 + x} \right)^n} = {c_0} + {c_1}x + {c_2}{x^2} + {c_3}{x^3} + ...... + {c_n}{x^n}$ , હોય તો ${c_0} - 3{c_1} + 5{c_2} - ........ + {( - 1)^n}\,(2n + 1){c_n}$ ની કિમત મેળવો 

  • A

    $\left( {n - 1} \right){.2^n}$

  • B

    $0$

  • C

    $\left( {1 - 2n} \right){.2^{n - 1}}$

  • D

    $\left( {1 - n} \right){.2^n}$

Similar Questions

${(1 + x)^n}$ ના વિસ્તરણમાં $x$ ની અયુગ્મ ઘાતાંકના સહગુણકનો સરવાળો મેળવો.

જો $n$ એ ધન પૂર્ણાક છે કે જેથી $n \ge 3$,  હોય તો શ્રેણી $1 . n - \frac{{\left( {n\, - \,1} \right)}}{{1\,\,!}} (n - 1) + \frac{{\left( {n\, - \,1} \right)\,\,\left( {n\, - \,2} \right)}}{{2\,\,!}} (n - 2) $$-  \frac{{\left( {n\, - \,1} \right)\,\,\left( {n\, - \,2} \right)\,\,\left( {n\, - \,3} \right)}}{{3\,\,!}} (n - 3) + ......$ ના $n$ પદોનો સરવાળો મેળવો 

${({x^2} + x - 3)^{319}}$ ના વિસ્તરણમાં બધા સહગુણકનો સરવાળો કરો.

${(x + a)^n}$ ના વિસ્તરણમાં , $P$ એ અયુગ્મ પદનો સરવાળો દર્શાવે છે અને $Q$ એ યુગ્મ પદનો સરવાળો દર્શાવે છે તો $({P^2} - {Q^2})$ = . . .. .

જો ${(1 + x + {x^2})^n}$ ના વિસ્તરણમાં ${a_r}$ એ ${x^r}$ નો સહગુણક દર્શાવે છે ,તો ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $