If  ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ then

  • A

    $\left| z \right|\, < \,\frac{3}{2}$

  • B

    $\left| z \right|\, > \,\frac{3}{2}$

  • C

    $\left| z \right|\, > {2}$

  • D

    $\left| z \right|\, < {2}$

Similar Questions

The value of $\left(\left(\log _2 9\right)^2\right)^{\frac{1}{\log _2\left(\log _2 9\right)}} \times(\sqrt{7})^{\frac{1}{\log _4 7}}$ is. . . . . . .

  • [IIT 2018]

If $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2,$ then $A$ is equal to

If ${a^2} + 4{b^2} = 12ab,$ then $\log (a + 2b)$ is

The number ${\log _2}7$ is

  • [IIT 1990]

If ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}},$ then which of the following is true