$\mathrm{EQUATION}$ શબ્દના બધા મૂળાક્ષરોનો એક સમયે ઉપયોગ કરીને સ્વરો અને વ્યંજનો એક જ સાથે આવે તે રીતે અર્થસભર કે અર્થરહિત કેટલા શબ્દો બનાવી શકાય ?
In the word $EQUATION$, there are $5$ vowels, namely, $A , E , I , O$ and $U$ and $3$ consonants, namely $Q , T$ and $N.$
since all the vowels and consonants have to occur together, both $(AEIOU)$ and $(QTN)$ can be assumed as single objects. Then, the permutations of these $2$ objects taken all at a time are counted.
This number would be $^{2} P_{2}=2 !$
Corresponding to each of these permutations, there are $5 !$ Permutations of the five vowels taken all at a time and $3 !$ Permutations of the $3$ consonants taken all at a time.
Hence, by multiplication principle, required number of words $2! \times 5! \times 3!=1440$
જો$\sum\limits_{i = 0}^m {\left( {\begin{array}{*{20}{c}}{10}\\i\end{array}} \right)} \,\left( {\begin{array}{*{20}{c}}{20}\\{m - i}\end{array}} \right)\,,$ $\left( {{\rm{where}}\,\left( {\begin{array}{*{20}{c}}p\\q\end{array}} \right)\, = 0\,{\rm{if}}\,p < q} \right)$ નો સરવાળો મહતમ હોય,તો $m$ ની કિંમત મેળવો.
એક દુકાનમાં પાંચ પ્રકારના આઇસ-સ્ક્રીમ છે.જો એક છોકરો છ આઇસ-સ્ક્રીમ ખરીદે છે.
વિધાન $1$:છોકરો કુલ $\left( {\begin{array}{*{20}{c}}{10}\\5\end{array}} \right)$. વિવિધ રીતે છ આઇસ-સ્ક્રીમ ખરીદી શકે છે.
વિધાન $2$: છોકરો વિવિધ રીતે છ આઇસ-સ્ક્રીમ ખરીદી શકે તેવી ગોઠવણી અને છ $A$ અને ચાર $B $ ને એક સુરેખ હારની ગોઠવણી બરાબર થાય.
$5$ ઈનામો $4$ છોકરાંઓ વચ્ચે કેટલી ભિન્ન રીતે વહેંચી શકાય જ્યારે દરેક છોકરો કોઈ પણ ઈનામની સંખ્યા લઈ શકે છે?
$11$ વાદળી અને બાકીના લાલ હોય તેવા એક સરખા $16$ સમધનોને એક હારમાં ગોઠવવાના છે કે જેથી કોઈ પણ બે લાલ સમઘનની વચ્ચે ઓછામાં ઓછા બે વાદળી સમઘન આવે તો આ ગોઠવણી કેટલી રીતે થઈ શકે ?
$'EAMCET'$ શબ્દના બધા અક્ષરો શક્ય તેટલી રીતે ગોઠવી શકાય છે. બે સ્વર એકબીજાની પાસે-પાસે ન આવે તેમ કેટલી રીતે ગોઠવણી શક્ય છે ?