$-6,-\frac{11}{2},-5, \ldots \ldots$ સમાંતર શ્રેણીનાં કેટલાં પ્રથમ પદનો સરવાળો $-25$ થાય ? 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the sum of $n$ terms of the given $A.P.$ be $-25$

It is known that,

$S_{n}=\frac{n}{2}[2 a+(n-1) d]$

Where $n=$ number of terms, $a=$ first term, and $d=$ common difference

Here, $a=-6$

$d=-\frac{11}{2}+6=\frac{-11+12}{2}=\frac{1}{2}$

Therefore, we obtain

$-25=\frac{n}{2}\left[2 \times(-6)+(n-1)\left(\frac{1}{2}\right)\right]$

$\Rightarrow-50=n\left[-12+\frac{n}{2}-\frac{1}{2}\right]$

$\Rightarrow-50=n\left[-\frac{25}{2}+\frac{n}{2}\right]$

$\Rightarrow-100=n(-25+n)$

$\Rightarrow n^{2}-25 n+100=0$

$\Rightarrow n^{2}-5 n-20 n+100=0$

$\Rightarrow n(n-5)-20(n-5)=0$

$\Rightarrow n=20$ or $5$

Similar Questions

જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, }}{{\text{a}}_{\text{3}}}{\text{ }}............{\text{ , }}{{\text{a}}_{\text{n}}}$  સમગુણોત્તર શ્રેણી રચે છે. 

$\left| {\begin{array}{*{20}{c}}
  {\log \,{a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}} \\ 
  {\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}} \\ 
  {\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}} 
\end{array}} \right|$ ની કિંમતની મેળવો.

અલગ અલગ સમાંતર શ્રેણી કે જેનું પ્રથમ પદ  $100$ અને અંતિમ પદ $199$ છે અને સમાન્ય તફાવત પૂર્ણાંક છે. જો આવી સમાંતર શ્રેણીના બધાજ સામાન્ય તફાવતનો સરવાળો મેળવો કે જેમાં ઓછામાં ઓછા $3$ પદો હોય અને વધુમાં વધુ $33$ પદો હોય.

  • [JEE MAIN 2022]

સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો $2n + 3n^2$ છે અને નવી સમાંતર શ્રેણી બનાવમાં આવે છે કે જેમાં પ્રથમ પદ સમાન હોય  અને સામાન્ય તફાવત બમણો હોય તો નવી શ્રેણીના $n$ પદનો સરવાળો મેળવો.

  • [JEE MAIN 2013]

જો $a, b$ અને $c$ એ સમાંતર શ્રેણીનાં અનુક્રમે પ્રથમ, દ્વિતીય અને અંતિમ પદ હોય, તો આ પદની કુલ સંખ્યા...... છે.

ધારોકે અંકો $a,b,c$ સમાંતર શ્રેણીમાં છે.આ ત્રણેય અંકોનો ત્રણ વાર ઉપયોગ કરીને $9-$અંકો વાળી એવી સંખ્યા બનાવવામાં આવે છે કે જેથી ત્રણ ક્રમિક અંકો ઓછામાં ઓછા એક વાર સમાંતર શ્રેણીમાં હોય.આ પ્રકારની કેટલી સંખ્યાઓ બનાવી શકાય છે?

  • [JEE MAIN 2023]