For $2 \le r \le n,\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right) + 2\,\left( \begin{array}{l}\,\,n\\r - 1\end{array} \right)$ $ + \left( {\begin{array}{*{20}{c}}n\\{r - 2}\end{array}} \right)$ is equal to
$\left( {\begin{array}{*{20}{c}}{n + 1}\\{r - 1}\end{array}} \right)$
$2\,\left( {\begin{array}{*{20}{c}}{n + 1}\\{r + 1}\end{array}} \right)$
$2\,\left( {\begin{array}{*{20}{c}}{n + 2}\\r\end{array}} \right)$
$\left( {\begin{array}{*{20}{c}}{n + 2}\\r\end{array}} \right)$
An urn contains $5$ red marbles, $4$ black marbles and $3$ white marbles. Then the number of ways in which $4$ marbles can be drawn so that at the most three of them are red is
The number of ordered pairs ( $\mathrm{r}, \mathrm{k}$ ) for which $6 \cdot ^{35} \mathrm{C}_{\mathrm{r}}=\left(\mathrm{k}^{2}-3\right)\cdot{^{36} \mathrm{C}_{\mathrm{r}+1}}$. where $\mathrm{k}$ is an integer, is
A scientific committee is to be formed from $6$ Indians and $8$ foreigners, which includes at least $2$ Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed, is
The number of ways five alphabets can be chosen from the alphabets of the word $MATHEMATICS$, where the chosen alphabets are not necessarily distinct, is equal to :
Total number of $3$ letter words that can be formed from the letters of the word $'SAHARANPUR'$ is equal to