Given the sets $A = \{ 1,\,2,\,3\} ,\,B = \{ 3,4\} , C = \{4, 5, 6\}$, then $A \cup (B \cap C)$ is

  • A

    $\{3\}$

  • B

    $\{1, 2, 3, 4\}$

  • C

    $\{1, 2, 4, 5\}$

  • D

    $\{1, 2, 3, 4, 5, 6\}$

Similar Questions

State whether each of the following statement is true or false. Justify you answer.

$\{a, e, i, o, u\}$ and $\{a, b, c, d\}$ are disjoint sets.

Let $A=\{a, b\}, B=\{a, b, c\} .$ Is $A \subset B \,?$ What is $A \cup B \,?$

If $A = \{2, 3, 4, 8, 10\}, B = \{3, 4, 5, 10, 12\}, C = \{4, 5, 6, 12, 14\}$ then $(A \cap B) \cup (A \cap C)$ is equal to

If the sets $A$ and $B$ are defined as $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y =  - x,x \in R\} $, then

If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find

$B-A$