दिया है $\mathop A\limits^ \to + \mathop B\limits^ \to + \mathop C\limits^ \to $ $= 0$, तीन में से दो सदिश परिमाण में समान हैं तथा तीसरे सदिश का परिमाण पहले दो समान परिमाण वाले सदिशों में से किसी एक का $\sqrt 2 $ गुना है तो सदिशों के मध्य कोण है
$30°, 60°, 90°$
$45°, 45°, 90°$
$45°, 60°, 90°$
$90°, 135°, 135°$
माना $\mathop C\limits^ \to = \mathop A\limits^ \to + \mathop B\limits^ \to $ तब
माना दो अशून्य सदिशों $\mathop A\limits^ \to $ व $\mathop B\limits^ \to $ के बीच कोण $120^°$ है तथा इनका परिणामी $\mathop C\limits^ \to $ है तो
दिये गये बलों के युग्म मे से किस युग्म का परिणामी $2\, N$ नहीं हो सकता
दो सदिशों $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के परिमाण समान है। $(\overrightarrow{ A }+\overrightarrow{ B })$ का परिमाण $(\overrightarrow{ A }-\overrightarrow{ B })$ के परिमाण का $n$ गुना है। $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के मध्य कोण है।