Write principle of Homogeneity of dimension.
A physical quantity of the dimensions of length that can be formed out of $c, G$ and $\frac{e^2}{4\pi \varepsilon _0}$ is $[c$ is velocity of light, $G$ is the universal constant of gravitation and $e$ is charge $] $
A liquid drop placed on a horizontal plane has a near spherical shape (slightly flattened due to gravity). Let $R$ be the radius of its largest horizontal section. A small disturbance causes the drop to vibrate with frequency $v$ about its equilibrium shape. By dimensional analysis, the ratio $\frac{v}{\sqrt{\sigma / \rho R^3}}$ can be (Here, $\sigma$ is surface tension, $\rho$ is density, $g$ is acceleration due to gravity and $k$ is an arbitrary dimensionless constant)
The force of interaction between two atoms is given by $F\, = \,\alpha \beta \,\exp \,\left( { - \frac{{{x^2}}}{{\alpha kt}}} \right);$ where $x$ is the distance, $k$ is the Boltzmann constant and $T$ is temperature and $\alpha $ and $\beta $ are two constants. The dimension of $\beta $ is
Match the following two coloumns
Column $-I$ | Column $-II$ |
$(A)$ Electrical resistance | $(p)$ $M{L^3}{T^{ - 3}}{A^{ - 2}}$ |
$(B)$ Electrical potential | $(q)$ $M{L^2}{T^{ - 3}}{A^{ - 2}}$ |
$(C)$ Specific resistance | $(r)$ $M{L^2}{T^{ - 3}}{A^{ - 1}}$ |
$(D)$ Specific conductance | $(s)$ None of these |