For what value of $m$ is $x^{3}-2 m x^{2}+16$ divisible by $x+2 ?$
If $x^{3}-2 m x^{2}+16$ is divisible by $x+2,$ then $x+2$ is a factor of $x^{3}-2 m x^{2}+16.$
Now, let $\quad p(x)=x^{3}-2 m x^{2}+16.$
As $x+2=x-(-2)$ is a factor of $x^{3}-2 m x^{2}+16.$
So $\quad p(-2)=0.$
Now, $\quad p(-2)=(-2)^{3}-2 m(-2)^{2}+16.$
$=-8-8 m+16=8-8 m$
Now, $\quad p(-2)=0$
$\Rightarrow \quad 8-8 m=0$
$\Rightarrow \quad m=8 \div 8$
$\Rightarrow \quad m=1$
Hence, for $m +1, x +2$ is a factor of $x^{3}-2 m x^{2}+16,$ so $x^{3}-2 m x^{2}+16$ is completely divisible by $x+2.$
Find the value of each of the following polynomials at the indicated value of variables
$q(y)=5 y^{3}-4 y^{2}+14 y-\sqrt{3}$ at $y=2$
Find the value of the polynomial $x^{2}-7 x+12$ at.
$x=-2$
The value of the polynomial $5 x-4 x^{2}+3,$ when $x=-1$ is
Write the degree of each of the following polynomials
$x^{8}-6561$
Expand
$(3 x+7)(-3 x+7)$