For what value of $m$ is $x^{3}-2 m x^{2}+16$ divisible by $x+2 ?$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

If $x^{3}-2 m x^{2}+16$ is divisible by $x+2,$ then $x+2$ is a factor of $x^{3}-2 m x^{2}+16.$

Now, let $\quad p(x)=x^{3}-2 m x^{2}+16.$

As $x+2=x-(-2)$ is a factor of $x^{3}-2 m x^{2}+16.$

So $\quad p(-2)=0.$

Now, $\quad p(-2)=(-2)^{3}-2 m(-2)^{2}+16.$

$=-8-8 m+16=8-8 m$

Now, $\quad p(-2)=0$

$\Rightarrow \quad 8-8 m=0$

$\Rightarrow \quad m=8 \div 8$

$\Rightarrow \quad m=1$

Hence, for $m +1, x +2$ is a factor of $x^{3}-2 m x^{2}+16,$ so $x^{3}-2 m x^{2}+16$ is completely divisible by $x+2.$

Similar Questions

Find the value of each of the following polynomials at the indicated value of variables

$q(y)=5 y^{3}-4 y^{2}+14 y-\sqrt{3}$ at $y=2$

Find the value of the polynomial $x^{2}-7 x+12$ at.

$x=-2$

The value of the polynomial $5 x-4 x^{2}+3,$ when $x=-1$ is

Write the degree of each of the following polynomials

$x^{8}-6561$

Expand

$(3 x+7)(-3 x+7)$