Find the value of each of the following polynomials at the indicated value of variables
$q(y)=5 y^{3}-4 y^{2}+14 y-\sqrt{3}$ at $y=2$
$q(y)=5 y^{3}-4 y^{2}+14 y-\sqrt{3}$
Replacing $y$ by $2,$ we get
$q(2)=5(2)^{3}-4(2)^{2}+14(2)-\sqrt{3}$
$=5(8)-4(4)+28-\sqrt{3}$
$=40-16+28-\sqrt{3}$
$=68-16-\sqrt{3}=52-\sqrt{3}$
Therefore, the value of $q(y)$ at $y=2$ is $52-\sqrt{3}$
Without actually calculating the cubes, find the value of :
$(0.2)^{3}-(0.3)^{3}+(0.1)^{3}$
Find $p(1), p(2)$ and $p(4)$ for each of the following polynomials
$p(x)=x^{3}+9 x^{2}+23 x+15$
Find $p(-2)$ for the polynomial $p(x)=5 x^{2}-11 x+3$
Factorise $: 4 x^{2}+4 x y-3 y^{2}$
Expand the following:
$(3 a-2 b)^{3}$