For the reaction taking place on water, the order of reaction is
${{H}_{2}}+C{{l}_{2}}\xrightarrow{\text{Sunlight}}2HCl$
$1$
$2$
$3$
$0$
The reaction, $X + 2Y + Z \to N$ occurs by the following mechanism
$(i)$ $X + Y \rightleftharpoons M$ very rapid equilibrium
$(ii)$ $M + Z \to P$ slow
$(iii)$ $O + Y \to N$ very fast
What is the rate law for this reaction
If a reaction has the experimental rate expression rate $= K [A]^2[B]$, if the concentration of $A$ is doubled and the concentration of $B$ is halved, the what happens to the reaction rate
Assertion :The order of a reaction can have fractional value.
Reason : The order of a reaction cannot be written from balanced equation of a reaction.
The experimental data for decomposition of $N _{2} O _{5}$
$\left[2 N _{2} O _{5} \rightarrow 4 NO _{2}+ O _{2}\right]$
in gas phase at $318 \,K$ are given below:
$t/s$ | $0$ | $400$ | $800$ | $1200$ | $1600$ | $2000$ | $2400$ | $2800$ | $3200$ |
${10^2} \times \left[ {{N_2}{O_5}} \right]/mol\,\,{L^{ - 1}}$ | $1.63$ | $1.36$ | $1.14$ | $0.93$ | $0.78$ | $0.64$ | $0.53$ | $0.43$ | $0.35$ |
$(i)$ Plot $\left[ N _{2} O _{5}\right]$ against $t$
$(ii)$ Find the half-life period for the reaction.
$(iii)$ Draw a graph between $\log \left[ N _{2} O _{5}\right]$ and $t$
$(iv)$ What is the rate law $?$
$(v)$ Calculate the rate constant.
$(vi)$ Calculate the half-life period from $k$ and compare it with $(ii)$.
Reaction $aA + bB\,\to $ product. The rate of reaction $= k[A]^3\, [B]^0$ if the concentration of $A$ is double and concentration of $B$ is half the rate will be ?