Assertion :The order of a reaction can have fractional value.

Reason : The order of a reaction cannot be written from balanced equation of a reaction.

  • [AIIMS 2008]
  • A

    If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.

  • B

    If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.

  • C

    If the Assertion is correct but Reason is incorrect.

  • D

    If both the Assertion and Reason are incorrect.

Similar Questions

For an elementary reaction, $2A + B \to   C + D$ the molecularity is

Calculate the order of the reaction in $A$ and $B$

       $A$

       $(mol/l)$

      $B$

     $(mol/l)$

   Rate
       $0.05$       $0.05$  $1.2\times 10^{-3}$
       $0.10$       $0.05$  $2.4\times 10^{-3}$
       $0.05$       $0.10$  $1.2\times 10^{-3}$

The experimental data for the reaction $2A + {B_2} \to 2AB$ isThe rate equation for the above data is

Exp.

$[A]_0$

$[B]_0$

Rate (mole $s^{-1}$)

$(1)$

$0.50$

$0.50$

$1.6 \times {10^{ - 4}}$

$(2)$

$0.50$

$1.00$

$3.2 \times {10^{ - 4}}$

$(3)$

$1.00$

$1.00$

$3.2 \times {10^4}$

  • [AIPMT 1997]

The alkaline hydrolysis of ethyl acetate is represented by the equation$C{H_3}COO{C_2}{H_5} + NaOH \to C{H_3}COONa + {C_2}{H_5}OH$ Experimentally it is found that for this reaction$\frac{{dx}}{{dt}} = k[C{H_3}COO{C_2}{H_5}]\,[NaOH]$ Then the reaction is

In the following reaction $A \longrightarrow B + C$, rate constant is $0.001\, Ms^{-1}$. If we start with $1\, M$ of $A$ then concentration of $A$ and $B$ after $10\, minutes$ are respectively