Let $\alpha>0, \beta>0$ be such that $\alpha^{3}+\beta^{2}=4 .$ If the maximum value of the term independent of $x$ in the binomial expansion of $\left(\alpha x^{\frac{1}{9}}+\beta x^{-\frac{1}{6}}\right)^{10}$ is $10 k$ then $\mathrm{k}$ is equal to
$176$
$336$
$352$
$84$
If the coefficient of $x ^{10}$ in the binomial expansion of $\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}}+\frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}$ is $5^{ k } l$, where $l, k \in N$ and $l$ is coprime to $5$ , then $k$ is equal to
Given that the term of the expansion $(x^{1/3} - x^{-1/2})^{15}$ which does not contain $x$ is $5\, m$ where $m \in N$, then $m =$
${r^{th}}$ term in the expansion of ${(a + 2x)^n}$ is
Show that the coefficient of the middle term in the expansion of $(1+x)^{2 n}$ is equal to the sum of the coefficients of two middle terms in the expansion of $(1+x)^{2 n-1}$
The middle term in the expansion of ${(1 + x)^{2n}}$ is