दीर्घवृत्त $25{x^2} + 9{y^2} - 150x - 90y + 225 = 0$ की उत्केन्द्रता $e = $
$2\over5$
$3\over5$
$4\over5$
$1\over5$
यदि दीर्घवृत्त की नाभियाँ तथा शीर्ष क्रमश: $( \pm 1,\;0)$ तथा $( \pm 2,\;0)$ हों, तो उसका लघु अक्ष है
दीर्घवृत्त की जीवा के ध्रुवों का बिन्दुपथ होगा
माना $S =\left\{( x , y ) \in N \times N : 9( x -3)^2+16( y -4)^2 \leq 144\right\}$
तथा $T =\left\{( x , y ) \in R \times R :( x -7)^2+( y -4)^2 \leq 36\right\}$हैं। तो $n ( S \cap T )$ बराबर $............$ है।
यदि परवलय $y ^{2}= x$ के एक बिन्दु $(\alpha, \beta),(\beta>0)$ पर, स्पर्श रेखा, दीर्घवृत्त $x ^{2}+2 y ^{2}=1$ की भी स्पर्श रेखा है, तो $\alpha$ बराबर है
माना दीर्घवत्त $\frac{ x ^{2}}{9}+\frac{ y ^{2}}{1}=1$ तथा वत्त $x ^{2}+ y ^{2}=3$ के प्रथम चतुर्थाश में प्रतिच्छेदन बिन्दु पर स्पर्श रेखाओं के बीच न्यून कोण $\theta$ है। तब $\tan \theta$ बराबर है