For reaction
$Cl_2(aq) + H_2S(aq) \to S(s) + 2H^+(aq) + 2Cl^-(aq)$ rate law is $r = K[Cl_2][H_2S]$
then which of these mechanism is/are consistent with this rate law
$(A)\, H_2S \rightleftharpoons H^+ + HS^-$ (fast)
$Cl_2 + HS^-\to 2Cl^-+ H^+ + S$ (slow)
$(B)\, Cl_2 + H_2S \to H^+ + Cl^-+ Cl^+ + HS^-$ (slow)
$Cl^+ + HS^-\to H^+ + Cl^-+ S$ (fast)
Both $(A)$ and $(B)$
$A$ only
$B$ only
Neither $A$ nor $B$
$Zn + 2H^+ \to Zn^{2+} + H_2$
The half-life period is independent of the concentration of zinc at constant $pH$. For the constant concentration of $Zn$, the rate becomes $100$ times when $pH$ is decreased from $3\, to\, 2$. Identify the correct statements $(pH = -\log [H^{+}])$
$(A)$ $\frac{{dx}}{{dt}}\, = k{[Zn]^0}{[{H^ + }]^2}$
$(B)$ $\frac{{dx}}{{dt}}\, = k{[Zn]}{[{H^ + }]^2}$
$(C)$ Rate is not affected if the concentraton of zinc is made four times and that of $H^+$ ion is halved.
$(D)$ Rate becomes four times if the concentration of $H^+$ ion is doubled at constant $Zn$ concentration
Write general equation of reaction and explain - what is order of reaction ? Which is its value ?
For the reaction $2A + B \to C$,the values of initial rate at different reactant concentrations are given in the table below: The rate law for the reaction is
$[A] (mol\,L^{-1})$ | $[B] (mol\,L^{-1})$ | Initial Rate $(mol\, L^{-1}\,s^{-1} )$ |
$0.05$ | $0.05$ | $0.045$ |
$0.10$ | $0.05$ | $0.090$ |
$0.20$ | $0.10$ | $0.72$ |
For the reaction $C{H_3}COOC{H_3} + {H_2}O\xrightarrow{{{H^ + }}}$ $C{H_3}COOH + C{H_3}OH$ The progress of the process of reaction is followed by
For a chemical reaction $Y + 2Z \to $ Product, rate controlling step is $Y\, + \frac{1}{2}Z\, \to Q$ If the concentration of $Z$ is doubled, the rate of reaction will