$Zn + 2H^+ \to  Zn^{2+} + H_2$

The half-life period is independent of the concentration of zinc at constant $pH$. For the constant concentration of $Zn$, the rate becomes $100$ times when $pH$ is decreased from $3\, to\, 2$. Identify the correct statements $(pH = -\log [H^{+}])$

$(A)$  $\frac{{dx}}{{dt}}\, = k{[Zn]^0}{[{H^ + }]^2}$

$(B)$  $\frac{{dx}}{{dt}}\, = k{[Zn]}{[{H^ + }]^2}$

$(C)$ Rate is not affected if the concentraton of zinc is made four times and that of $H^+$ ion is halved.

$(D)$ Rate becomes four times if the concentration of $H^+$ ion is doubled at constant $Zn$ concentration

  • A

    $A,C$

  • B

    $A,C$ and $D$

  • C

    $B,C$ and $D$

  • D

    None

Similar Questions

The order of a reaction with rate equals $kC_A^{3/2}\,C_B^{ - 1/2}$ is

Write differential rate expression of following reaction and give its order of reaction :

$5 B r^{-}+B r O_{3}^-+6 H^{+} \rightarrow 3 B r_{2}+3 H_{2} O$

For the reaction

$2 \mathrm{H}_{2}(\mathrm{g})+2 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

the observed rate expression is, rate $=\mathrm{k}_{\mathrm{f}}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right] .$ The rate expression of the reverse reaction is

  • [JEE MAIN 2020]

The reaction, $X + 2Y + Z \to  N$ occurs by the following mechanism

$(i)$ $X + Y  \rightleftharpoons  M$             very rapid equilibrium

$(ii)$ $M + Z \to  P$                        slow

$(iii)$ $O + Y \to  N$                       very fast

What is the rate law for this reaction

The experimental data for reaction
$2A + B_2 \longrightarrow 2AB$

Exp. $[A]$ $[B_2]$ Rate $(mol\,L^{-1}\,S^{-1})$
$1$ $0.50$ $0.50$ $1.6 \times {10^{ - 4}}$
$2$ $0.50$ $1.00$ $3.2 \times {10^{ - 4}}$
$3$ $1.00$ $1.00$ $3.2 \times {10^{ - 4}}$

The rate law