For a chemical reaction $Y + 2Z \to $ Product, rate controlling step is $Y\, + \frac{1}{2}Z\, \to Q$ If the concentration of $Z$ is doubled, the rate of reaction will
remain the same
become four times
become $1.414$ times
become double
For the decomposition of azoisopropane to hexane and nitrogen at $543$ $K ,$ the following data are obtained.
$t$ $(sec)$ | $P(m m \text { of } H g)$ |
$0$ | $35.0$ |
$360$ | $54.0$ |
$720$ | $63.0$ |
Calculate the rate constant.
For a given reaction ${t_{1/2}} = \frac{1}{{Ka}}.$. The order of the reaction is
For the hypothetical reaction $2X + G \to Q + 2M$ , the rate expression is $\frac{{d\left[ Q \right]}}{{dt}} = k{\left[ X \right]^2}$ . Which of the following is the most likely mechanism ?
An example of a pseudo -unimolecular reaction is
Consider following two reaction,
$A \to {\text{Product ;}}\,\, - \frac{{d[A]}}{{dt}} = {k_1}{[A]^o}$
$B \to {\text{Product ;}}\,\, - \frac{{d[B]}}{{dt}} = {k_2}{[B]}$
Units of $k_1$ and $k_2$ are expressed in terms of molarity $(M)$ and time $(sec^{-1})$ as