For reaction :

$2NO_2(g) + O_3(g) \to N_2O_5(g) + O_2(g)$

rate law is $R = K\, [NO_2]' [O_3]'$.

Which of these possible reaction mechanisms is consistent with the rate law?

Mechanism $I :$

$NO_2(g) + O_3(g) \to NO_3(g) + O_2(g)$ (slow)

$NO_3(g) + NO_2(g) \to N_2O_5(g)$ (fast)

Mechanism $II :$

$O_3(g)  \rightleftharpoons  O_2(g) + [O]$ (fast)

$NO_2(g) + [O] \to NO_3$ (slow)

$NO_3(g) + NO_2(g) \to  N_2O_5$ (fast)

  • A

    $I$ only

  • B

    $II$ only

  • C

    Both $I$ and $II$

  • D

    Neither $I$ nor $II$

Similar Questions

For a certain reaction, the rate $=k[A]^2[B]$, when the initial concentration of $A$ is tripled keeping concentration of $B$ constant, the initial rate would

  • [NEET 2023]

Rate of reaction is given by following rate law $ - \frac{{d\left[ c \right]}}{{dt}} = \frac{{{k_1}\,\left[ c \right]}}{{1 + {k_2}\,\left[ c \right]}}$ order of reaction when concentration is verh high

The rate constant for a second order reaction is $8 \times {10^{ - 5}}\,{M^{ - 1}}\,mi{n^{ - 1}}$. How long will it take a $ 1\,M $ solution to be reduced to $0.5\, M$

Mechanism of a hypothetical reaction

$X_2 + Y_2 \rightarrow 2XY,$ is given below :

$(i)\,\, X_2 \rightarrow X + X\, (fast)$

$(ii)\,\,X + Y_2 \rightleftharpoons XY + Y\, (slow)$

$(iii)\,\,X + Y \rightarrow XY\, (fast)$

The overall order of the reaction will be

  • [NEET 2017]

For the non - stoichimetre reaction $2A + B \rightarrow C + D,$ the following kinetic data were obtained in three separate experiments, all at $298\, K.$

Initial Concentration

$(A)$

Initial Concentration

$(A)$

Initial rate of formation of $C$

$(mol\,L^{-1}\,s^{-1})$

$0.1\,M$ $0.1\,M$ $1.2\times 10^{-3}$
$0.1\,M$ $0.2\,M$ $1.2\times 10^{-3}$
$0.2\,M$ $0.1\,M$ $2.4 \times 10^{-3}$

The rate law for the formation of $C$ is :

  • [JEE MAIN 2014]