For a certain reaction, the rate $=k[A]^2[B]$, when the initial concentration of $A$ is tripled keeping concentration of $B$ constant, the initial rate would

  • [NEET 2023]
  • A

    Increase by a factor of three

  • B

    Decrease by a factor of nine

  • C

    Increase by a factor of six

  • D

    Increase by a factor of nine

Similar Questions

The experimental data for decomposition of $N _{2} O _{5}$

$\left[2 N _{2} O _{5} \rightarrow 4 NO _{2}+ O _{2}\right]$

in gas phase at $318 \,K$ are given below:

$t/s$ $0$ $400$ $800$ $1200$ $1600$ $2000$ $2400$ $2800$ $3200$
${10^2} \times \left[ {{N_2}{O_5}} \right]/mol\,\,{L^{ - 1}}$ $1.63$ $1.36$ $1.14$ $0.93$ $0.78$ $0.64$ $0.53$ $0.43$ $0.35$

$(i)$ Plot $\left[ N _{2} O _{5}\right]$ against $t$

$(ii)$ Find the half-life period for the reaction.

$(iii)$ Draw a graph between $\log \left[ N _{2} O _{5}\right]$ and $t$

$(iv)$ What is the rate law $?$

$(v)$ Calculate the rate constant.

$(vi)$ Calculate the half-life period from $k$ and compare it with $(ii)$.

For the non - stoichimetre reaction $2A + B \rightarrow C + D,$ the following kinetic data were obtained in three separate experiments, all at $298\, K.$

Initial Concentration

$(A)$

Initial Concentration

$(A)$

Initial rate of formation of $C$

$(mol\,L^{-1}\,s^{-1})$

$0.1\,M$ $0.1\,M$ $1.2\times 10^{-3}$
$0.1\,M$ $0.2\,M$ $1.2\times 10^{-3}$
$0.2\,M$ $0.1\,M$ $2.4 \times 10^{-3}$

The rate law for the formation of $C$ is :

  • [JEE MAIN 2014]

The rate of reaction, $A + B + C \longrightarrow P$ is given by

$r = \frac{{ - d\left[ A \right]}}{{dt}} = K\,{\left[ A \right]^{\frac{1}{2}}}\,{\left[ B \right]^{\frac{1}{2}}}\,{\left[ C \right]^{\frac{1}{4}}}$

The order of reaction is

The reaction $2FeC{l_3} + SnC{l_2} \to 2FeC{l_2} + SnC{l_4}$ is an example of

  • [AIPMT 1996]

Assertion : In rate law, unlike in the expression for equilibrium constants, the exponents for concentrations do not necessarily match the stoichiometric coefficients.

Reason : It is the mechanism and not the balanced chemical equation for the overall change that governs the reaction rate.

  • [AIIMS 2009]