$m$ અને $n$ એ બંને $1$ કરતાં મહત્તમ પૂર્ણાંકો છે નીચેના વિધાનો માટે, જો
$P$ : $m$ એ $n$ વડે વિભાજ્ય છે
$Q$ : $m$ એ $n^2$ વડે વિભાજ્ય છે
$R$ : $m$ એ અવિભાજય સંખ્યા છે તો સાચું વિધાન .
$Q \wedge R \to P$
$P \wedge Q \to R$
$Q \to R$
$Q \to P$
જો $p, q$, અને $r$ એ ત્રણ વિધાનો હોય, તો $p, q$, અને $r$ ના સત્ય મૂલ્યો માટે નીચેના પૈકી કયું સંયોજન તાર્કીક વિધાન $\{(p \vee q) \wedge((\sim p) \vee r)\} \rightarrow((\sim q) \vee r)$ ને ખોટુ બનાવે છે ?
જો $p, q, r$ એ વિધાનો હોય તો વિધાન $p\Rightarrow (q\vee r)$ =
વિધાન $(p \wedge q) \rightarrow p$ શું છે ?
બુલિયન સમીકરણ $(p \wedge \sim q) \Rightarrow(q \vee \sim p)$ એ .. . .. તુલ્ય છે.
જો $p$ અને $q$ એ બે વિધાનો હોય તો નીચેનામાંથી ક્યું વિધાન $p \to q$ ને તાર્કિક રીતે સમાન થાય