For component of a vector $A =(3 \hat{ i }+4 \hat{ j }-5 \hat{ k })$, match the following colum.
Colum $I$ Colum $II$
$(A)$ $x-$axis $(p)$ $5\,unit$
$(B)$ Along another vector $(2 \hat{ i }+\hat{ j }+2 \hat{ k })$ $(q)$ $4\,unit$
$(C)$ Along $(6 \hat{ i }+8 \hat{ j }-10 \hat{ k })$ $(r)$ $0$
$(D)$ Along another vector $(-3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ $(s)$ None

  • A
    $( A \rightarrow q , B \rightarrow r , C \rightarrow s , D \rightarrow s )$
  • B
    $( A \rightarrow p , B \rightarrow r , C \rightarrow s , D \rightarrow s )$
  • C
    $( A \rightarrow r , B \rightarrow q , C \rightarrow s , D \rightarrow s )$
  • D
    $( A \rightarrow q , B \rightarrow r , C \rightarrow s , D \rightarrow p )$

Similar Questions

If $| A |=2,| B |=5$ and $| A \times B |=8$ Angle between $A$ and $B$ is acute, then $A \cdot B$ is

If $A$ is a unit vector in a given direction, then the value of $\hat{ A } \cdot \frac{d \hat{ A }}{d t}$ is

If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.

Column $-I$ Column $-II$
$(a)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,0$ $(i)$ $\theta = \,{30^o}$
$(b)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,8$ $(ii)$ $\theta = \,{45^o}$
$(c)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4$ $(iii)$ $\theta = \,{90^o}$
$(d)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4\sqrt 2$ $(iv)$ $\theta = \,{0^o}$

If $\overrightarrow A = 3\hat i + \hat j + 2\hat k$ and $\overrightarrow B = 2\hat i - 2\hat j + 4\hat k$ then value of $|\overrightarrow A \times \overrightarrow B |\,$ will be

What will be the projection of vector $A=\hat{i}+\hat{j}+\hat{k}$ on vector $\vec{B}=\hat{i}+\hat{j}$.

  • [JEE MAIN 2021]