For a reaction taking place in three steps at same temperature, overall rate constant $\mathrm{K}=\frac{\mathrm{K}_1 \mathrm{~K}_2}{\mathrm{~K}_3}$. If $\mathrm{Ea}_1, \mathrm{Ea}_2$ and $\mathrm{Ea}_3$ are $40$,$50$ and $60 \mathrm{~kJ} / \mathrm{mol}$ respectively, the overall $\mathrm{Ea}$ is ________ $\mathrm{kJ} / \mathrm{mol}$.
$20$
$10$
$30$
$45$
For a chemical reaction,$ A + 2B \to C + D,$ the rate of reaction increases three times, when concentration of $A$ only is increased nine times. While when concentration of $B$ only is increased $2\,times,$ then rate of reaction also increases $2\,times$. The order of this reaction is
If reaction between $A$ and $B$ to give $C$shows first order kinetics in $A$ and second order in $B$, the rate equation can be written as
The elementary reaction $2SO_2(g) + O_2(g) \to 2SO_3(g)$ is carried out in $1\, dm^3$ vessel and $2\,dm^3$ vessel separately. The ratio of the reaction velocities will be
Assertion :The order of a reaction can have fractional value.
Reason : The order of a reaction cannot be written from balanced equation of a reaction.
The incorrect order indicated against the rate of reaction is Rate Order
$A+B\xrightarrow{K}C$
Rate Order