For a chemical reaction,$ A + 2B \to C + D,$ the rate of reaction increases three times, when concentration of $A$ only is increased nine times. While when concentration of $B$ only is increased $2\,times,$ then rate of reaction also increases $2\,times$. The order of this reaction is

  • A

    $3$

  • B

    $\frac {3}{2}$

  • C

    $\frac {1}{2}$

  • D

    None of these

Similar Questions

$2 NO ( g )+ Cl _{2}( g ) \rightleftharpoons 2 NOCl ( s )$

This reaction was studied at $-10^{\circ} C$ and the following data was obtained

run $[ NO ]_{0}$ $\left[ Cl _{2}\right]_{0}$ $r _{0}$
$1$ $0.10$ $0.10$ $0.18$
$2$ $0.10$ $0.20$ $0.35$
$3$ $0.20$ $0.20$ $1.40$

$[ NO ]_{0}$ and $\left[ Cl _{2}\right]_{0}$ are the initial concentrations and $r _{0}$ is the initial reaction rate.

The overall order of the reaction is ..........

(Round off to the Nearest Integer).

  • [JEE MAIN 2021]

$A $ gaseous hypothetical chemical equation $2A$ $ \rightleftharpoons  $ $4B + C$ is carried out in a closed vessel. The concentration of $ B$  is found to increase by $5 \times {10^{ - 3}}mol\,\,{l^{ - 1}}$ in $10 $ second. The rate of appearance of $B$  is

Reaction : $KCl{O_3} + 6FeS{O_4} + 3{H_2}S{O_4} \to $ $KCl + 3F{e_2}{\left( {S{O_4}} \right)_3} + 3{H_2}O$

Which is True $(T)$ and False $(F) $ in the following sentence ?

The reaction is complex.

The following results have been obtained during the kinetic studies of the reaction:

$2 A+B \rightarrow C+D$

Experiment  $[ A ] / mol L ^{-1}$ $[ B ] / mol L ^{-1}$ Initial rate of formation of $D / mol \,L ^{-1} \,min ^{-1}$
$I$ $0.1$ $0.1$ $6.0 \times 10^{-3}$
$II$ $0.3$ $0.2$ $7.2 \times 10^{-2}$
$III$ $0.3$ $0.4$ $2.88 \times 10^{-1}$
$IV$ $0.4$ $0.1$ $2.40 \times 10^{-2}$

Determine the rate law and the rate constant for the reaction.

The rate constant for the reaction, $2{N_2}{O_5} \to 4N{O_2}$ $ + {O_2}$ is $3 \times {10^{ - 5}}{\sec ^{ - 1}}$. If the rate is $2.40 \times {10^{ - 5}}\,mol\,\,litr{e^{{\rm{ - 1}}}}{\sec ^{ - 1}}$. Then the concentration of ${N_2}{O_5}$ (in mol litre $^{-1}$) is

  • [IIT 2000]