For a reaction of order $\mathrm{n}$, the unit of the rate constant is :
$\mathrm{mol}^{1-\mathrm{n}} \mathrm{L}^{1-\mathrm{n}} \mathrm{s}^{-1}$
$\mathrm{mol}^{1-\mathrm{n}} \mathrm{L}^{\mathrm{n}-1} \mathrm{~s}^{-1}$
$\mathrm{mol}^{1-\mathrm{n}} \mathrm{L}^{1-\mathrm{n}} \mathrm{s}$
$\mathrm{mol}^{1-\mathrm{n}} \mathrm{L}^{2 \mathrm{n}} \mathrm{s}^{-1}$
The rate constant for the reaction $2N_2O_5 \to 4NO_2 + O_2$ is $3.0\times10^{-5}\, sec^{-1}$. If rate is $2.40\times10^{-5}\, M\, sec^{-1}$, then the concentration of $N_2O_5$ (in $M$) is ?
A study of chemical kinetics of the reaction $A + B \to$ Products, gave the following data at $25\,^oC$.
Exp. No. | [A] | [B] | Rate |
$1.$ | $1.0$ | $0.15$ | $4.2 × 10^{-6}$ |
$2.$ | $2.0$ | $0.15$ | $8.4 × 10^{-6}$ |
$3.$ | $1.0$ | $0.20$ | $5.6 × 10^{-6}$ |
Find out rate law
For the reaction $A + B \to $ products, what will be the order of reaction with respect to $A$ and $B$ ?
Exp. | $[A]\,(mol\,L^{-1})$ | $[B]\,(mol\,L^{-1})$ | Initial rate $(mol\,L^{-1}\,s^{-1})$ |
$1.$ | $2.5\times 10^{-4}$ | $3\times 10^{-5}$ | $5\times 10^{-4}$ |
$2.$ | $5\times 10^{-4}$ | $6\times 10^{-5}$ | $4\times 10^{-3}$ |
$3.$ | $1\times 10^{-3}$ | $6\times 10^{-5}$ | $1.6\times 10^{-2}$ |
For a reaction $\mathrm{A} \xrightarrow{\mathrm{K}_4} \mathrm{~B} \xrightarrow{\mathrm{K}_2} \mathrm{C}$
If the rate of formation of $B$ is set to be zero then the concentration of $B$ is given by :
Why can’t molecularity of any reaction be equal to zero ?