For a reaction $\mathrm{A} \xrightarrow{\mathrm{K}_4} \mathrm{~B} \xrightarrow{\mathrm{K}_2} \mathrm{C}$
If the rate of formation of $B$ is set to be zero then the concentration of $B$ is given by :
$\mathrm{K}_1 \mathrm{~K}_2[\mathrm{~A}]$
$\left(\mathrm{K}_1-\mathrm{K}_2\right)[\mathrm{A}]$
$\left(\mathrm{K}_1+\mathrm{K}_2\right)[\mathrm{A}]$
$\left(\mathrm{K}_1 / \mathrm{K}_2\right)[\mathrm{A}]$
The reaction that occurs in a breath analyser, a device used to determine the alcohol level in a person's blood stream is
$2 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+8 \mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \rightarrow 2 \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+$
$3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+11 \mathrm{H}_{2} \mathrm{O}$
If the rate of appearance of $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is $2.67 \,\mathrm{~mol}$ $\min ^{-1}$ at a particular time, the rate of disappearance of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ at the same time is ...... $\mathrm{mol}\, \mathrm{min}^{-1}$ (Nearest integer)
The rate constant of the reaction $2H_2O_2(aq) \to 2H_2O(aq) + O_2(g)$ is $3\times10^{-3}\, min^{-1}$. At what concentration of $H_2O_2$, the rate of reaction will be $2\times10^{-4}\, M\, s^{-1}$ ? ............ $M$
In the hydrolysis of an organic chloride in presence of large excess of water
$RCl + H_2O \longrightarrow ROH + HCl$
Assertion :The order of a reaction can have fractional value.
Reason : The order of a reaction cannot be written from balanced equation of a reaction.
Assuming the reaction
$2NO(g) + Cl_2(g) \longrightarrow 2NOCl(g)$
occurs in a single elementary step, we can say that