Find three different irrational numbers lying between $\sqrt{3}$ and $\sqrt{5}$.
An irrational number lying between $\sqrt{3}$ and $\sqrt{5}$
$=\sqrt{\sqrt{3} \cdot \sqrt{5}}$
$=\sqrt{\sqrt{15}}$
$=15^{\frac{1}{4}}$
An irrational number lying between $\sqrt{3}$ and $15^{\frac{1}{4}}$
$=\sqrt{\sqrt{3} \cdot 15^{\frac{1}{4}}}$
$=\sqrt{3^{\frac{1}{2}} \cdot 3^{\frac{1}{4}} \cdot 5^{\frac{1}{4}}}$
$=\sqrt{3^{\frac{3}{4}} \cdot 5^{\frac{1}{4}}}$
$=3^{\frac{3}{8}} \cdot 5^{\frac{1}{8}}$
An irrational number lying between $\sqrt{3}$ and $3^{\frac{3}{6}} \cdot 5^{\frac{1}{8}}$
$=\sqrt{\sqrt{3} \cdot 3^{\frac{3}{8}} \cdot 5^{\frac{1}{8}}}$
$=\sqrt{3^{\frac{1}{2}} \cdot 3^{\frac{3}{8}} \cdot 5^{\frac{1}{8}}}$
$=\sqrt{3^{\frac{7}{8}} \cdot 5^{\frac{1}{8}}}$
$=3^{\frac{7}{16}} \cdot 5^{\frac{1}{16}}$
Hence, required three irrational numbers between $\sqrt{3}$ and $\sqrt{5}$ are $15^{\frac{1}{4}}, 3^{\frac{3}{8}} \cdot 5^{\frac{1}{8}}$ and $3^{\frac{7}{16}} \cdot 5^{\frac{1}{16}}$
Find the value of $a$ :
$\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}}=a-6 \sqrt{3}$
Simplify:
$(\frac{1}{27})^{\frac{-2}{3}}$
Divide $12 \sqrt{30}$ by $3 \sqrt{5}$.
State whether each of the following statements is true or false
$\sqrt{3} \times \sqrt{5}=\sqrt{8}$
Simplify $: 5 \sqrt{2}+2 \sqrt{8}-3 \sqrt{32}+4 \sqrt{128}$