Find the value of $a$ :
$\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}}=a-6 \sqrt{3}$
$11$
$-11$
$12$
$13$
Find the value
$\sqrt[5]{(243)^{-3}}$
Classify the following numbers as rational or irrational with justification:
$(i)$ $\sqrt{\frac{9}{27}}$
$(ii)$ $\frac{\sqrt{28}}{\sqrt{343}}$
Express $0.6+0 . \overline{7}+0.4 \overline{7}$ in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0$.
Find which of the variables $x, y, z$ and $u$ represent rational numbers and which irrational numbers:
$(i)$ $x^{2}=5$
$(ii)$ $\quad y^{2}=9$
$(iii)$ $z^{2}=.04$
$(iv)$ $u^{2}=\frac{17}{4}$
The number obtained on rationalizing the denominator of $\frac{1}{7-\sqrt{2}}$ is