Find the values of $a$ and $b$ in each of the following:
$\frac{7+\sqrt{5}}{7-\sqrt{5}}-\frac{7-\sqrt{5}}{7+\sqrt{5}}=a+\frac{7}{11} \sqrt{5} b$
$-1,0$
$1,0$
$0,-1$
$0,1$
Classify the following numbers as rational or irrational with justification:
$(i)$ $\sqrt{\frac{9}{27}}$
$(ii)$ $\frac{\sqrt{28}}{\sqrt{343}}$
Find the value
$64^{\frac{5}{6}}$
Rationalise the denominator in each of the following
$\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}}$
Prove that, $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}=1$
Simplify the following:
$\sqrt{45}-3 \sqrt{20}+4 \sqrt{5}$