अनुक्रम $7,77,777,7777, \ldots$ के $n$ पदों का योग ज्ञात कीजिए।
This is not a $G.P.,$ however, we can relate it to a $G.P.$ by writing the terms as
${S_n} = 7 + 77 + 777 + 7777 + \ldots {\rm{ }}$ to $ n $ terms
$ = \frac{7}{9}[9 + 99 + 999 + 9999 + \ldots $ to $ n $ term $]$
$ = \frac{7}{9}[(10 - 1) + \left( {{{10}^2} - 1} \right) + \left( {{{10}^3} - 1} \right) + \left( {{{10}^4} - 1} \right) + \ldots n{\rm{ }}$ term $]$
$=\frac{7}{9}\left[\left(10+10^{2}+10^{3}+\ldots n \text { terms }\right)-(1+1+1+\ldots n \text { terms })\right]$
$=\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right]=\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$
यदि $p,\;q,\;r$ एक गुणोत्तर श्रेणी में हैं तथा $a,\;b,\;c$ एक अन्य गुणोत्तर श्रेणी में हैं, तब $cp,\;bq,\;ar$ होंगे
यदि $x,\,2x + 2,\,3x + 3$ गुणोत्तर श्रेणी में हों, तो चौथा पद है
यदि $a$ व $b$ समीकरण ${x^2} - 3x + p = 0$ के मूल हैं तथा $c$ व $d$ समीकरण ${x^2} - 12x + q = 0$ के मूल हैं, जहाँ $a,\;b,\;c,\;d$ एक वर्धमान गुणोत्तर श्रेणी बनाते हैं, तब $(q + p):(q - p)$ का अनुपात है
यदि ${\log _x}a,\;{a^{x/2}}$ व ${\log _b}x$ गुणोत्तर श्रेणी में हों, तब $x =$
$\overline {0.037} $ का मान, जहाँ $\overline {.037} $ संख्या $0.037037037........$ को निरूपित करता है