Find the sum of the products of the corresponding terms of the sequences $2,4,8,16,32$ and $128,32,8,2, \frac{1}{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Required sum $=2 \times 128+4 \times 32+8 \times 8+16 \times 2+32 \times \frac{1}{2}$

$=64\left[4+2+1+\frac{1}{2}+\frac{1}{2^{2}}\right]$

Here, $4,2,1, \frac{1}{2}, \frac{1}{2^{2}}$ is a $G.P.$

First term, $a=4$

Common ratio, $r=\frac{1}{2}$

It is known that, $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$

$\therefore S_{5}=\frac{4\left[1-\left(\frac{1}{2}\right)^{5}\right]}{1-\frac{1}{2}}=\frac{4\left[1-\frac{1}{32}\right]}{\frac{1}{2}}=8\left(\frac{32-1}{32}\right)=\frac{31}{4}$

$\therefore$ Required sum $=64\left(\frac{31}{4}\right)=(16)(31)=496$

Similar Questions

Let $S_1$ be the sum of areas of the squares whose sides are parallel to coordinate axes. Let $S_2$ be the sum of areas of the slanted squares as shown in the figure. Then, $\frac{S_1}{S_2}$ is equal to

  • [KVPY 2016]

If $a, b, c, d$ and $p$ are different real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right)\, \leq \,0,$ then show that $a, b, c$ and $d$ are in $G.P.$

The sum of an infinite geometric series is $3$. A series, which is formed by squares of its terms, have the sum also $3$. First series will be

If $a, b$ and $c$ be three distinct numbers in $G.P.$ and $a + b + c = xb$ then $x$ can not be

  • [JEE MAIN 2019]

The sum of the series $3 + 33 + 333 + ... + n$ terms is