If $a, b, c, d$ and $p$ are different real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right)\, \leq \,0,$ then show that $a, b, c$ and $d$ are in $G.P.$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given that

$\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \,\leq \,0$       .........$(1)$

But $L.H.S.$

$=\left(a^{2} p^{2}-2 a b p+b^{2}\right)+\left(b^{2} p^{2}-2 b c p+c^{2}\right)+\left(c^{2} p^{2}-2 c d p+d^{2}\right)$

which gives $(a p-b)^{2}+(b p-c)^{2}+(c p-d)^{2}\, \geq \,0$          ..........$(2)$

Since the sum of squares of real numbers is non negative, therefore, from $(1)$ and $(2),$

we have, $(a p-b)^{2}+(b p-c)^{2}+(c p-d)^{2}=0$

or $a p-b=0, b p-c=0, c p-d=0$

This implies that $\frac{b}{a}=\frac{c}{b}=\frac{d}{c}=p$

Hence $a, b, c$ and $d$ are in $G.P.$

Similar Questions

If $S$ is the sum to infinity of a $G.P.$, whose first term is $a$, then the sum of the first $n$ terms is

Find four numbers forming a geometric progression in which the third term is greater than the first term by $9,$ and the second term is greater than the $4^{\text {th }}$ by $18 .$

The number of natural number $n$ in the interval $[1005, 2010]$ for which the polynomial. $1+x+x^2+x^3+\ldots+x^{n-1}$ divides the polynomial $1+x^2+x^4+x^6+\ldots+x^{2010}$ is

  • [KVPY 2010]

If the roots of the cubic equation $a{x^3} + b{x^2} + cx + d = 0$ are in $G.P.$, then

if $x = \,\frac{4}{3}\, - \,\frac{{4x}}{9}\, + \,\,\frac{{4{x^2}}}{{27}}\, - \,\,.....\,\infty $ , then $x$ is equal to