$1$ થી $100 $ વચ્ચેની $2$ અથવા $5$ વડે વિભાજ્ય સંખ્યાઓનો સરવાળો શોધો. છે. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The integers from $1$ to $100,$ which are divisible by $2,$ are $2,4,6 \ldots \ldots 100$

This forms an $A.P.$ with both the first term and common difference equal to $2.$

$\Rightarrow 100=2+(n-1) 2$

$\Rightarrow n=50$

$\therefore 2+4+6+\ldots \ldots+100=\frac{50}{2}[2(2)+(50-1)(2)]$

$=\frac{50}{2}[4+98]$

$=(25)(102)$

$=2550$

The integers from $1$ to $100 ,$ which are divisible by $5,10 \ldots . .100$

This forms an $A.P.$ with both the first term and common difference equal to $5 .$

$\therefore 100=5+(n-1) 5$

$\Rightarrow 5 n=100$

$\Rightarrow n=20$

$\therefore 5+10+\ldots .+100=\frac{20}{2}[2(5)+(20-1) 5]$

$=10[10+(19) 5]$

$=10[10+95]=10 \times 105$

$=1050$

The integers, which are divisible by both $2$ and $5,$ are $10,20, \ldots \ldots 100$

This also forms an $A.P.$ with both the first term and common difference equal to $10.$

$\therefore 100=10+(n-1)(10)$

$\Rightarrow 100=10 n$

$\Rightarrow n=10$

$\therefore 10+20+\ldots .+100=\frac{10}{2}[2(10)+(10-1)(10)]$

$=5[20+90]=5(110)=550$

$\therefore$ Required sum $=2550+1050-550=3050$

Thus, the sum of the integers from $1$ to $100,$ which are divisible by $2$ or $5,$ is $3050$

Similar Questions

ધારો કે $\mathrm{S}_{\mathrm{n}}$ એક સમાંતર શ્રેણીના પ્રથમ $\mathrm{n}$ પદ્દોનો સરવાળો દર્શાવે છે. જે $\mathrm{S}_{10}=390$ તથા દસમા અને પાંચમા પદોનો ગુણોત્તર $15: 7$ હોય, તો $S_{15}-S_5=$........................ 

  • [JEE MAIN 2024]

શ્રેણી $2,\,5,\,8...$ ના $2n$ પદનો સરવાળો એ શ્રેણી $57,\,59,\,61...$,ના $n$ પદના સરવાળા બરાબર હોય તો $n$ મેળવો.

  • [IIT 2001]

જો $\frac{1}{p+q},\,\frac{1}{r+p}\,\,$ અને $\frac{1}{q+r}\,$ સમાંતર શ્રેણીમાં હોયતો.........

જે સમાંતર શ્રેણીનું $k$ મું પદ $5k + 1$ હોય તેના પ્રથમ પદનો સરવાળો શોધો. 

જો સમાંતર શ્રેણીમાં આવેલાં પ્રથમ $n, 2n, 3n$ પદોના સરવાળા અનુક્રમે $S_{1}, S_{2}$ અને $S_{3},$  હોય, તો બતાવો કે $S_{3}=3\left(S_{2}-S_{1}\right)$.