Find the equation for the ellipse that satisfies the given conditions: Vertices $(\pm 6,\,0),$ foci $(\pm 4,\,0)$
Vertices $(\pm 6,\,0),$ foci $(±4,\,0)$
Here, the vertices are on the $x-$ axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semimajor axis.
Accordingly, $a=6, \,c=4$
It is known as $a^{2}=b^{2}+c^{2}$
$\therefore 6^{2}=b^{2}+4^{2}$
$\Rightarrow 36=b^{2}+16$
$\Rightarrow b^{2}=36-16$
$\Rightarrow b=\sqrt{20}$
Thus, the equation of the ellipse is $\frac{x^{2}}{6^{2}}+\frac{y^{2}}{(\sqrt{20})^{2}}=1$ or $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$
The eccentricity of the ellipse $\frac{{{{(x - 1)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{{25}} = 1$ is
The equation of an ellipse, whose vertices are $(2, -2), (2, 4)$ and eccentricity $\frac{1}{3}$, is
The eccentric angles of the extremities of latus recta of the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ are given by
P is any point on the ellipse $9{x^2} + 36{y^2} = 324$, whose foci are $S$ and $S’$. Then $SP + S'P$ equals
In an ellipse, the distance between its foci is $6$ and minor axis is $8.$ Then its eccentricity is :