Find the equation for the ellipse that satisfies the given conditions: Vertices $(\pm 6,\,0),$ foci $(\pm 4,\,0)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Vertices $(\pm 6,\,0),$ foci $(±4,\,0)$

Here, the vertices are on the $x-$ axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semimajor axis.

Accordingly, $a=6, \,c=4$

It is known as $a^{2}=b^{2}+c^{2}$

$\therefore 6^{2}=b^{2}+4^{2}$

$\Rightarrow 36=b^{2}+16$

$\Rightarrow b^{2}=36-16$

$\Rightarrow b=\sqrt{20}$

Thus, the equation of the ellipse is $\frac{x^{2}}{6^{2}}+\frac{y^{2}}{(\sqrt{20})^{2}}=1$ or $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$

Similar Questions

The eccentricity of the ellipse $\frac{{{{(x - 1)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{{25}} = 1$ is

The equation of an ellipse, whose vertices are $(2, -2), (2, 4)$ and eccentricity $\frac{1}{3}$, is

The eccentric angles of the extremities of latus recta of the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ are given by

P is any point on the ellipse $9{x^2} + 36{y^2} = 324$, whose foci are $S$ and $S’$. Then $SP + S'P$ equals

In an ellipse, the distance between its foci is $6$ and minor axis is $8.$ Then its eccentricity is :