અંશ માપ શોધો. ( $\pi=\frac{22}{7}$ લો. ) $\frac{11}{16}$
We know that $\pi$ radian $=180^{\circ}$
$\therefore \frac{11}{16}$ radian $=\frac{180}{\pi} \times \frac{11}{16}$ degree $=\frac{45 \times 11}{\pi \times 4}$ degree
$=\frac{45 \times 11 \times 7}{22 \times 4}$ degree $=\frac{315}{8}$ degree
$=36 \frac{3}{8}$ degree
$=39^{\circ}+\frac{3 \times 60}{8}$ minutes $\left[1^{\circ}=60^{\prime}\right]$
$=39^{\circ}+22^{\prime}+\frac{1}{2}$ minutes
$=39^{\circ} 22^{\prime} 30^{\prime \prime} \quad\left[1^{\prime}=60^{\prime \prime}\right]$
જો $x = \sec \,\phi - \tan \phi,y = {\rm{cosec}}\phi+ \cot \phi,$ તો
$(m + 2)\sin \theta + (2m - 1)\cos \theta = 2m + 1,$ જો . . .
જો $sin\theta_1 + sin\theta_2 + sin\theta_3 = 3,$ થાય તો $cos\theta_1 + cos\theta_2 + cos\theta_3=$
સાબિત કરો કે : $\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]=1$
જો $A + C = B,$ તો $\tan A\,\tan B\,\tan C = $