$\frac{10}{3}, \frac{7}{8}$ और $\frac{1}{7}$ के दशमलव प्रसार ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac {10}{3}= 3.3333$ ............ 

Remainders : $1$, $1$, $1$, $1$, $1$ ............

Divisor : $3$

$\frac {7}{8}= 0.875$ ............ 

Remainders : $6$, $4$, $0$, ............

Divisor : $8$

$\frac {1}{7}= 0.142857$ ............ 

Remainders : $3$, $2$, $6$, $4$, $5$, $1$, $3$, $2$, $6$, $4$, $5$, $1$ ............

Divisor : $7$

What have you noticed ? You should have noticed at least three things: 

$(i)$ The remainders either become $0$ after a certain stage, or start repeating themselves.

$(ii)$ The number of entries in the repeating string of remainders is less than the divisor (in $\frac {10 }{3}$ one number repeats itself and the divisor is $3$, in $\frac {1 }{7}$ there are six entries $326451$ in the repeating string of remainders and $7$ is the divisor). 

$(iii)$ If the remainders repeat, then we get a repeating block of digits in the quotient (for $\frac {10} {3}$ , $3$ repeats in the quotient and for $\frac {1} {7}$ , we get the repeating block $142857$ in the quotient).

Similar Questions

ज्ञात कीजिए

$(i)$ $9^{\frac{3}{2}}$

$(ii)$ $32^{\frac{2}{5}}$

$(iii)$ $16^{\frac{3}{4}}$

$(iv)$ $125^{\frac{-1}{3}}$

दिखाइए कि $3.142678$ एक परिमेय संख्या है। दूसरे शब्दों, में $3.142678$ को $\frac{p}{q}$ के रूप में व्यक्त कीजिए, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है।

$0.99999......$ को $\frac{p}{q}$ के रूप में व्यक्त कीजिए। क्या आप अपने उत्तर से आश्चर्यचकित है ? अपने अध्यापक और कक्षा के सहयोगियों के साथ उत्तर की सार्थकता पर चर्चा कीजिए।

दिखाइए कि $0.3333 \ldots=0 . \overline{3}$ को $\frac{p}{q}$ के रूप में व्यक्त किया जा सकता है, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है।

सरल कीजिए

$(i)$ $2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}}$

$(ii)$ $\left(\frac{1}{3^{5}}\right)^{4}$

$(iii)$ $\frac{7^{\frac{1}{5}}}{7^{\frac{1}{3}}}$

$(iv)$ $13^{\frac{1}{5}} \cdot 17^{\frac{1}{5}}$