Find the angle in radian through which a pendulum swings if its length is $75\, cm$ and the tip describes an arc of length.
$15\,cm$
We know that in a circle of radius $r$ unit, if an arc of length $l$ unit subtends
An angle $\theta$ radian at the centre, then $\theta=\frac{l}{r}$
It is given that $r=75\, cm$
Here, $l=15\, cm$
$\theta=\frac{15}{75}$ radian
$=\frac{1}{5}$ radian
Prove that:
$2 \sin ^{2} \frac{\pi}{6}+\cos ec ^{2} \frac{7 \pi}{6} \cos ^{2} \frac{\pi}{3}=\frac{3}{2}$
In a right angled triangle the hypotenuse is $2 \sqrt 2$ times the perpendicular drawn from the opposite vertex. Then the other acute angles of the triangle are
Find the values of other five trigonometric functions if $\cos x=-\frac{1}{2}, x$ lies in third quadrant.
If $\theta $ lies in the second quadrant, then the value of $\sqrt {\left( {\frac{{1 - \sin \theta }}{{1 + \sin \theta }}} \right)} + \sqrt {\left( {\frac{{1 + \sin \theta }}{{1 - \sin \theta }}} \right)} $
Find the values of other five trigonometric functions if $\cot x=\frac{3}{4}, x$ lies in third quadrant.