જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_7}$ પદ શોધો : $a_{n}=\frac{n^{2}}{2^{n}}$ 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Substituting $n=7,$ we obtain

$a_{7}=\frac{7^{2}}{2^{7}}=\frac{49}{128}$

Similar Questions

કોઇપણ ત્રણ ધન વાસ્તવિક સંખ્યાઓ $a,b,c$ માટે $9\left( {25{a^2} + {b^2}} \right) + 25\left( {{c^2} - 3ac} \right) = 15b\left( {3a + c} \right)$તો:

  • [JEE MAIN 2017]

સમાંતર શ્રેણીઓ $3,7,11, \ldots ., 407$ અને  $2,9,16, \ldots . .709$ ના સામાન્ય પદોની સંખ્યા મેળવો.

  • [JEE MAIN 2020]

એક બહુકોણમાં બે ક્રમિક અંતઃકોણોનો તફાવત $5^{\circ}$ છે. જો સૌથી નાનો ખૂણો $120^{\circ}$ નો હોય, તો તે બહુકોણની બાજુઓની સંખ્યા શોધો.

એક વ્યક્તિના પ્રથમ વર્ષની આવક $Rs. \,3,00,000$ છે. તેની આવકમાં પછીનાં $19$ વર્ષ સુધી પ્રતિ વર્ષ $Rs.\,10,000$ નો વધારો થાય છે. તો તે $20$ વર્ષમાં કુલ કેટલી રકમ મેળવશે ? 

જો ${\text{lo}}{{\text{g}}_{\text{3}}}\,{\text{2,}}\,{\text{lo}}{{\text{g}}_{\text{3}}}\,{\text{(}}{{\text{2}}^{\text{x}}}{\text{ - 5)}}$ અને ${\text{lo}}{{\text{g}}_{\text{3}}}\,\left( {{2^x} - \frac{7}{2}} \right)\,$ સમાંતર શ્રેણીમાં હોય, તો${\text{x}}\,\, = \,\,.......$