Find area of the triangle with vertices at the point given in each of the following: $(-2,-3),(3,2),(-1,-8)$
$15$ square units
$12$ square units
$14$ square units
$20$ square units
Let $S$ be the set of all real values of $k$ for which the system oflinear equations $x +y + z = 2$ ; $2x +y - z = 3$ ; $3x + 2y + kz = 4$ has a unique solution. Then $S$ is
If $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\b&c&{b + c}\\{a + b}&{b + c}&0\end{array}\,} \right| = 0$; then $a,b,c$ are in
If $\left| {\,\begin{array}{*{20}{c}}1&k&3\\3&k&{ - 2}\\2&3&{ - 1}\end{array}\,} \right| = 0$,then the value of $ k $ is
If ${A_\lambda } = \left( {\begin{array}{*{20}{c}}
\lambda &{\lambda - 1}\\
{\lambda - 1}&\lambda
\end{array}} \right);\,\lambda \in N$ then $|A_1| + |A_2| + ..... + |A_{300}|$ is equal to