Find $p(0)$, $p(1)$ and $p(2)$ for  of the following polynomials : $p(y)=y^{2}-y+1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$p(y)=y^{2}-y+1$

$\because $ $p(y)=y^{2}-y+1=(y)^{2}-y+1$

$\therefore$ $p(0)=(0)^{2}-(0)+1=0-0+1=1$

$p(1)=(1)^{2}-(1)+1=1-1+1=1$

$p(2)=(2)^{2}-2+1=4-2+1=3$

Similar Questions

Factorise : $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$

Write the following cubes in expanded form : $\left[x-\frac{2}{3} y\right]^{3}$

Find the zero of the polynomial : $p(x)=c x+d, \,c \neq 0, \,c,\,d$ are real numbers.

If $x+y+z=0,$ show that $x^{3}+y^{3}+z^{3}=3 x y z$.

What are the possible expressions for the dimensions of the cuboids whose volumes are given below?$\boxed{\rm {Volume}\,:12 k y^{2}+8 k y-20 k}$