Find $p(0)$, $p(1)$ and $p(2)$ for  of the following polynomials : $p(y)=y^{2}-y+1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$p(y)=y^{2}-y+1$

$\because $ $p(y)=y^{2}-y+1=(y)^{2}-y+1$

$\therefore$ $p(0)=(0)^{2}-(0)+1=0-0+1=1$

$p(1)=(1)^{2}-(1)+1=1-1+1=1$

$p(2)=(2)^{2}-2+1=4-2+1=3$

Similar Questions

Write the degree of each of the following polynomials :

$(i)$ $5 x^{3}+4 x^{2}+7 x$

$(ii)$ $4-y^{2}$

Find the zero of the polynomial : $p(x)=a x,\,\, a \neq 0$

Find the following products using appropriate identities :

$(i) $ $ (x + 3) (x + 3)$

$(ii)$ $(x -3) (x + 5)$

Without actually calculating the cubes, find the value of each of the following : $(28)^{3}+(-15)^{3}+(-13)^{3}$

Expand each of the following, using suitable identities : $(x+2 y+4 z)^{2}$