Figure shows a rod ${AB}$, which is bent in a $120^{\circ}$ circular arc of radius $R$. A charge $(-Q)$ is uniformly distributed over rod ${AB}$. What is the electric field $\overrightarrow{{E}}$ at the centre of curvature ${O}$ ?
$\frac{3 \sqrt{3} {Q}}{8 \pi \varepsilon_{0} {R}^{2}}(\hat{{i}})$
$\frac{3 \sqrt{3} Q}{8 \pi^{2} \varepsilon_{0} R^{2}}(\hat{i})$
$\frac{3 \sqrt{3} Q}{16 \pi^{2} \varepsilon_{0} R^{2}}(\hat{i})$
$\frac{3 \sqrt{3} Q}{8 \pi^{2} \varepsilon_{0} R^{2}}(-\hat{i})$
A positively charged ball hangs from a silk thread. We put a positive test charge ${q_0}$ at a point and measure $F/{q_0}$, then it can be predicted that the electric field strength $E$
Five point charge each having magnitude $‘q’$ are placed at the corner of hexagon as shown in fig. Net electric field at the centre $‘O’$ is $\vec E$. To get net electric field at $‘O’$ be $6\vec E$, charge placed on the remaining sixth corner should be
Two point charges $q_1\,(\sqrt {10}\,\,\mu C)$ and $q_2\,(-25\,\,\mu C)$ are placed on the $x-$ axis at $x = 1\,m$ and $x = 4\,m$ respectively. The electric field (in $V/m$ ) at a point $y = 3\,m$ on $y-$ axis is, [ take ${\mkern 1mu} {\mkern 1mu} \frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}{\mkern 1mu} {\mkern 1mu} N{m^2}{C^{ - 2}}{\rm{ }}$ ]
An oil drop carries six electronic charges, has a mass of $1.6 \times 10^{-12} g$ and falls with a terminal velocity in air. The magnitude of vertical electrical electric field required to make the drop move upward with the same speed as was formely moving is ........$kN/C$
Charge $q$ is uniformly distributed over a thin half ring of radius $R$. The electric field at the centre of the ring is